skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Le_Glaunec, Alexis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 20, 2026
  2. This paper is about semantic regular expressions (SemREs). This is a concept that was recently proposed by Smore (Chen et al. 2023) in which classical regular expressions are extended with a primitive to query external oracles such as databases and large language models (LLMs). SemREs can be used to identify lines of text containing references to semantic concepts such as cities, celebrities, political entities, etc. The focus in their paper was on automatically synthesizing semantic regular expressions from positive and negative examples. In this paper, we study themembership testing problem. First, we present a two-pass NFA-based algorithm to determine whether a stringwmatches a SemRErinO(|r|2|w|2+ |r| |w|3) time, assuming the oracle responds to each query in unit time. In common situations, where oracle queries are not nested, we show that this procedure runs inO(|r|2|w|2) time. Experiments with a prototype implementation of this algorithm validate our theoretical analysis, and show that the procedure massively outperforms a dynamic programming-based baseline, and incurs a ≈ 2 × overhead over the time needed for interaction with the oracle. Second, we establish connections between SemRE membership testing and the triangle finding problem from graph theory, which suggest that developing algorithms which are simultaneously practical and asymptotically faster might be challenging. Furthermore, algorithms for classical regular expressions primarily aim to optimize their time and memory consumption. In contrast, an important consideration in our setting is to minimize the cost of invoking the oracle. We demonstrate an Ω(|w|2) lower bound on the number of oracle queries necessary to make this determination. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  3. Multi-pattern matching is widely used in modern software for applications requiring high throughput such as protein search, network traffic inspection, virus or spam detection. Graphics Processor Units (GPUs) excel at executing massively parallel workloads. Regular expression (regex) matching is typically performed by simulating the execution of deterministic finite automata (DFAs) or nondeterministic finite automata (NFAs). The natural implementations of these automata simulation algorithms on GPUs are highly inefficient because they give rise to irregular memory access patterns. This paper presents HybridSA, a heterogeneous CPU-GPU parallel engine for multi-pattern matching. HybridSA uses bit parallelism to efficiently simulate NFAs on GPUs, thus reducing the number of memory accesses and increasing the throughput. Our bit-parallel algorithms extend the classical shift-and algorithm for string matching to a large class of regular expressions and reduce automata simulation to a small number of bitwise operations. We have developed a compiler to translate regular expressions into bit masks, perform optimizations, and choose the best algorithms to run on the GPU. The majority of the regular expressions are accelerated on the GPU, while the patterns that exhibit random memory accesses are executed on the CPU in parallel. We evaluate HybridSA against state-of-the-art CPU and GPU engines, as well as a hybrid combination of the two. HybridSA achieves between 4 and 60 times higher throughput than the state-of-the-art CPU engine and between 4 and 233 times better than the state-of-the-art GPU engine across a collection of real-world benchmarks. 
    more » « less
  4. Regular expressions are commonly used for finding and extracting matches from sequence data. Due to the inherent ambiguity of regular expressions, a disambiguation policy must be considered for the match extraction problem, in order to uniquely determine the desired match out of the possibly many matches. The most common disambiguation policies are the POSIX policy and the greedy (PCRE) policy. The POSIX policy chooses the longest match out of the leftmost ones. The greedy policy chooses a leftmost match and further disambiguates using a greedy interpretation of Kleene iteration to match as many times as possible. The choice of disambiguation policy can affect the output of match extraction, which can be an issue for reusing regular expressions across regex engines. In this paper, we introduce and study the notion of disambiguation robustness for regular expressions. A regular expression is robust if its extraction semantics is indifferent to whether the POSIX or greedy disambiguation policy is chosen. This gives rise to a decision problem for regular expressions, which we prove to be PSPACE-complete. We propose a static analysis algorithm for checking the (non-)robustness of regular expressions and two performance optimizations. We have implemented the proposed algorithms and we have shown experimentally that they are practical for analyzing large datasets of regular expressions derived from various application domains. 
    more » « less
  5. Regular expressions (regexes) are ubiquitous in modern software. There is a variety of implementation techniques for regex matching, which can be roughly categorized as (1) relying on backtracking search, or (2) being based on finite-state automata. The implementations that use backtracking are often chosen due to their ability to support advanced pattern-matching constructs. Unfortunately, they are known to suffer from severe performance problems. For some regular expressions, the running time for matching can be exponential in the size of the input text. In order to provide stronger guarantees of matching efficiency, automata-based regex matching is the preferred choice. However, even these regex engines may exhibit severe performance degradation for some patterns. The main reason for this is that regexes used in practice are not exclusively built from the classical regular constructs, i.e., concatenation, nondeterministic choice and Kleene's star. They involve additional constructs that provide succinctness and convenience of expression. The most common such construct is bounded repetition (also called counting), which describes the repetition of the pattern a fixed number of times. In this paper, we propose a new algorithm for the efficient matching of regular expressions that involve bounded repetition. Our algorithms are based on a new model of automata, which we call nondeterministic bit vector automata (NBVA). This model is chosen to be expressively equivalent to nondeterministic counter automata with bounded counters, a very natural model for expressing patterns with bounded repetition. We show that there is a class of regular expressions with bounded repetition that can be matched in time that is independent from the repetition bounds. Our algorithms are general enough to cover the vast majority of challenging bounded repetitions that arise in practice. We provide an implementation of our approach in a regex engine, which we call BVA-Scan. We compare BVA-Scan against state-of-the-art regex engines on several real datasets. 
    more » « less